Flugg for v-Beam Simulation

Alex Himmel, Caltech LBNE Beam Simulation Meeting May 5th, 2010

Introduction

- Zarko has already given a good introduction to g4numi and how Flugg relates to it.
 - g4numi is a Geant4 simulation of the NuMI beamline
 - However, the physics of Fluka is preferred to Geant
 - Flugg provides an interface between Fluka and Geant4 so that
 a Fluka simulation can run over the g4numi geometry
- The target, as simulated by Flugg, was ~identical to that as simulated with just Fluka.
- The physics case for Flugg: downstream interactions
 - If the only hadronic interactions of interest happen in the target, then you could just take the original gnumi approach (separate target and beamline simulations)

Downstream Interactions

- The MINOS interest in downstream interactions is two-fold:
- Downstream interactions are a significant source of wrongsign neutrinos (antineutrinos in the neutrino beam)
 - About 30% of the Near Detector events are from parents produced outside the target
 - A little more than half of those come from the decay pipe
- The decay pipe needed to be filled with helium to avert a structural failure
 - Suddenly there were significantly more hadronic interactions happening in the decay pipe

Downstream Interactions

- Why we care about downstream interactions: extrapolation
 - An example from MINOS's first antineutrino analysis:
 - Neutrinos from decay pipe parents make up 17% of the ND but only 7% of the FD
- This means uncertainties in their flux only partially cancel between the two detectors.
- This happens because the decay pipe is \sim 700 m long, but the ND is only \sim 1 km from the target.

- Above I compare the ND spectrum before and after adding helium.
- The gnumi MC (black) shows a large rise at high energy that does not appear in data (blue).
 - I've been told that there is a "known problem" with GFluka predicting too many high x_f -particles
- Flugg, on the other hand, does an excellent job of modeling the change from adding helium to the decay pipe.

Practical Notes

- Software Requirements:
 - Geant4, Fluka, Flugg
 - Flugg can be very picky, so I would recommend getting the latest Flugg, which should work with the latest Fluka, and getting the version of Geant4 it was written for.
 - From the numisoft repository: g4numi, g4numi_flugg
- The experience of developing and running with Flugg
 - Running the Flugg executable and handling its output can be a little involved
 - With some clever scripting the process can be made relatively painless
 - While Fluka and Geant4 are both popular with large developer communities, Flugg is a niche package
 - That being said, Flugg is not abandoned (the latest version was released last year)
 - However, if you run into a bug you might need to go digging around in the Flugg source yourself
 - When I was working with it, I submitted several bug fixes related to handling non-uniform magnetic fields (the program would seg fault without them).

Conclusions

- Flugg gives good results when downstream interactions are important.
 - It certainly gives better results than the Fluka+Geant3 model
- I can also say, with some confidence, that a Flugg simulation will be more difficult to write.
- It was an excellent solution for MINOS which had:
 - An already well-understood Fluka-based target simulation
 - An already written Geant4 geometry